Math Calculators ▶ Determinant Kalkulačka
Adblocker Detected
We always struggled to serve you with the best online calculations, thus, there's a humble request to either disable the AD blocker or go with premium plans to use the AD-Free version for calculators.
Disable your Adblocker and refresh your web page 😊
PŘIDEJTE TENTO VÝPOČET NA SVÉ WEBOVÉ STRÁNKY:
Přidejte na svůj web kalkulačku determinantů, abyste mohli přímo používat tuto kalkulačku. S účtem tohoto widgetu se budete cítit bezproblémově, protože je 100% zdarma, snadno se používá a můžete si jej přidat na více online platforem.
Online determinant kalkulačka vám pomůže vypočítat determinant zadaných vstupních prvků matice. Tato kalkulačka určuje hodnotu determinantu matice až do velikosti matice 5 × 5. Vypočítává se vynásobením jeho hlavních diagonálních členů a redukcí matice na řádkovou echelonovou formu. Máme podrobné informace o tom, jak to vypočítat ručně, definici, vzorce a mnoho dalších užitečných údajů souvisejících s determinantem matice. Naše kalkulačka určuje výsledek pomocí následujících různých metod výpočtu:
Ale pojďme začít s některými základy.
Číst dál!
Jedná se o skalární hodnotu, která se získává z prvků čtvercové matice a má určité vlastnosti lineární transformace popsané maticí. Determinant matice je pozitivní nebo negativní, záleží na tom, zda lineární transformace zachovává nebo obrací orientaci vektorového prostoru. Pomáhá nám najít inverzi matice a věci, které jsou užitečné v systémech lineárních rovnic, počtu a dalších. Označuje se jako det (A), det A nebo | A |.
Poznámka:
Matice jsou uzavřeny v hranatých závorkách, zatímco determinanty jsou označeny svislými pruhy. Matice je pole čísel, ale determinant je jediné číslo.
Jak najít determinant matice ručně (krok za krokem):
Determinant matic lze vypočítat z různých metod. Zde uvádíme podrobné vzorce pro různé pořadí matice, abychom našli determinant z různých metod:
Bez ohledu na to, kterou metodu jste pro výpočty vybrali, je kalkulačka determinant matice A = (aij) 2 × 2 určen následujícím vzorcem:
\(
det A =
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix} \\
\)
\(det A = ad-bc \)
Příklad:
Najděte determinant matice 2×2 A.
\(
det A =
\begin{vmatrix}
4 & 12 \\
2 & 7
\end{vmatrix} \\
\)
Řešení:
\(
det A =
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix} \\
\)
\(|A| = (7)(4) – (2)(12)\)
\(|A| = 28 – 24\)
\(|A| = 4\)
Zde jsou diskutovány výpočty matic 3×3 z různých metod:
Pro výpočty matice A = (aij) 3 × 3 z expanze kolony se stanoví podle následujícího vzorce:
\(
det A =
\begin{vmatrix}
a & b & c\\d & e & f \\g & h & i
\end{vmatrix} \\
\)
\(det A= a\begin{vmatrix}
e & f \\h & i\end{vmatrix} – d\begin{vmatrix}b & c \\h & i\end{vmatrix}+g\begin{vmatrix}b & c \\e & f\end{vmatrix} \)
Příklad:
Nalézt
\(
det A =
\begin{vmatrix}
2 & 0 & 3\\1 & 4 & 1 \\0 & 4 & 7
\end{vmatrix} \\
\)?
Řešení:
\(det A= 2\begin{vmatrix}
4 & 1 \\4 & 7\end{vmatrix} – 1\begin{vmatrix}0 & 3 \\4 & 7\end{vmatrix}+0\begin{vmatrix}0 & 3 \\4 & 1\end{vmatrix} \)
\( det A = 2[(7)(4)-(4)(1)]-1[(4)(3)-(7)(0)]+ 0[(4)(3)-(1)(0)] \)
\( det A = 2[28-4]-1[12-0]+ 0[12-0] \)
\( det A = 2[24]-1[12]+ 0[12] \)
\( det A = 48-12+ 0 \)
\( det A = 36 \)
Pro výpočty matice A = (aij) 3 × 3 z roztažení řádku je určen následujícím vzorcem:
\(
det A =
\begin{vmatrix}
a & b & c\\d & e & f \\g & h & i
\end{vmatrix} \\
\)
\(det A= a\begin{vmatrix}
e & f \\h & i\end{vmatrix} – b\begin{vmatrix}d & f \\g & i\end{vmatrix}+c\begin{vmatrix}d & e \\g & h\end{vmatrix} \)
Příklad:
Nalézt
\(
det A =
\begin{vmatrix}
3 & 0 & 2\\1 & 4 & 1 \\7 & 0 & 4
\end{vmatrix} \\
\)?
Řešení:
\(det A= 3\begin{vmatrix}
4 & 1 \\0 & 4\end{vmatrix} – 0\begin{vmatrix}1 & 1 \\7 & 4\end{vmatrix}+2\begin{vmatrix}1 & 4 \\7 & 0\end{vmatrix} \)
\(det A = 3[(4)(4)-(0)(1)]-0[(4)(1)-(7)(1)]+ 2[(0)(1)-(7)(4)]\)
\(det A = 3[16-0]-0[4-7]+ 2[0-28]\)
\(det A = 3[16]-0[-3]+ 2[-28]\)
\(det A = 48+0- 56\)
\(det A = -8\)
Pro výpočty matice A = (aij) 3 × 3 pomocí Leibnizova vzorce se stanoví následující vzorec:
\(
det A =
\begin{vmatrix}
a & b & c\\d & e & f \\g & h & i
\end{vmatrix} \\
\)
\(det A =(a*e*i)-(a*f*h)-(b*d*i)+(b*f*g)+(c*d*h)-(c*e*g) \)
Příklad:
Nalézt
\(
det A =
\begin{vmatrix}
2 & 3 & 8\\6 & 1 & 2 \\5 & 8 & 9
\end{vmatrix} \\
\)?
Řešení:
\(
det A =
\begin{vmatrix}
2 & 3 & 8\\6 & 1 & 2 \\5 & 8 & 9
\end{vmatrix} \\
\)
\(det A = 2*1*9-2*2*8-3*6*9+3*2*5+8*6*8-8*1*5\)
\(det A =198\)
Pro výpočty matice A = (aij) 3 × 3 z pravidla Triangle je určeno následujícím vzorcem:
\(
det A =
\begin{vmatrix}
a & b & c\\d & e & f \\g & h & i
\end{vmatrix} \\
\)
Image
\(det A =(a*e*i)-(a*f*h)-(b*d*i)+(b*f*g)+(c*d*h)-(c*e*g) \)
Příklad:
Nalézt
\(
det A =
\begin{vmatrix}
4 & 5 & 8\\0 & 4 & 9 \\1 & 2 & 3
\end{vmatrix} \\
\)?
Řešení:
\(
det A =
\begin{vmatrix}
4 & 5 & 8\\0 & 4 & 9 \\1 & 2 & 3
\end{vmatrix} \\
\)
\(det A = 4*4*3+5*9*1+8*0*2-1*4*8-2*9*4-3*0*5\)
\(det A =-11\)
Pro výpočty matice A = (aij) 3 × 3 podle pravidla Sarrus se stanoví podle následujícího vzorce:
\(
det A =
\begin{vmatrix}
a & b & c\\d & e & f \\g & h & i
\end{vmatrix} \\
\)
Image
\(det A =(a*e*i)-(a*f*h)-(b*d*i)+(b*f*g)+(c*d*h)-(c*e*g) \)
Příklad:
Nalézt
\(
det A =
\begin{vmatrix}
9 & 5 & 1\\3 & 5 & 7 \\4 & 8 & 6
\end{vmatrix} \\
\)?
Řešení:
\(
det A =
\begin{vmatrix}
9 & 5 & 1\\3 & 5 & 7 \\4 & 8 & 6
\end{vmatrix} \\
\)
\(det A = 9*5*6+5*7*4+1*3*8-4*5*1-8*7*9-6*3*5\)
\(det A = -180\)
Zde jsou diskutovány výpočty matic 4×4 z různých metod:
Pro výpočty matice A = (aij) 4 × 4 z expanze kolony se stanoví podle následujícího vzorce:
\(
det A =
\begin{vmatrix}
a & b & c & d\\e & f & g &h \\i & j & k & l \\ m & n & o & p
\end{vmatrix} \\
\)
\(det A= a\begin{vmatrix}
f & g & h\\j & k & l\\n & o & p\end{vmatrix} – e\begin{vmatrix}b & c & d\\j & k & l\\ n & o & p\end{vmatrix}+i\begin{vmatrix}b & c & d \\f & g & h\\n & o & p\end{vmatrix}-m\begin{vmatrix}b & c & d\\f & g & h\\j & k & l\end {vmatrix}\)
Poté jednoduše určete determinant 3×3 pomocí výše uvedeného vzorce 3×3.
Příklad:
Nalézt
\(
det A =
\begin{vmatrix}
1 & 8 & 7 & 2\\2 & 4 & 3 &8 \\1 & 4 & 3 & 2 \\ 1 & 4 & 9 & 6
\end{vmatrix} \\
\)?
Řešení:
\(det A= 1\begin{vmatrix}4 & 3 & 8\\4 & 3 & 2\\4 & 9 & 6\end{vmatrix} – 2\begin{vmatrix}8 & 7 & 2\\4 & 3 & 2\\ 4 & 9 & 6\end{vmatrix}+1\begin{vmatrix}8 & 7 & 2 \\4 & 3 & 8\\4 & 9 & 6\end{vmatrix}-1\begin{vmatrix}8 & 7 & 2\\4 & 3 & 8\\4 & 3 & 2\end {vmatrix}\)
\(det A=1( 4\begin{vmatrix}
3 & 2 \\9 & 6\end{vmatrix} – 3\begin{vmatrix}4 & 2 \\4 & 6\end{vmatrix}+8\begin{vmatrix}4 & 3 \\4 & 9\end{vmatrix}) -2( 8\begin{vmatrix}
3 & 2 \\9 & 6\end{vmatrix} – 7\begin{vmatrix}4 & 2 \\4 & 6\end{vmatrix}+2\begin{vmatrix}4 & 3 \\4 & 9\end{vmatrix}) +1( 8\begin{vmatrix}3 & 8 \\9 & 6\end{vmatrix} – 7\begin{vmatrix}4 & 8 \\4 & 6\end{vmatrix}+2\begin{vmatrix}4 & 3 \\4 & 9\end{vmatrix}) -1( 8\begin{vmatrix}
3 & 8 \\3 & 2\end{vmatrix} – 7\begin{vmatrix}4 & 8 \\4 & 6\end{vmatrix}+2\begin{vmatrix}4 & 3 \\4 & 3\end{vmatrix})\)
\(det A = 1[4(18-18)-3(24-8)+ 8(36-12)]-2[ 8(18-18)-7(24-8)+ 2(36-12)]+ 1[ 8(18-72)-7(24-32)+ 2(36-12)] -1[8(6-24)-7(8-32)+ 2(12-12)]\)
\(det A = 1[4(0)-3(16)+ 8(24)]-2[ 8(0)-7(16)+ 2(24)]+ 1[ 8(-54)-7(-8)+ 2(24)]-1[8(-18)-7(-24)+ 2(0)]\)
\(det A = 1[0-48+192]-2[0-112+48]+ 1[ -432+56+48]-1[-144+168+0]\)
\(det A = 1[144]-2[-64]+ 1[-328]-1[24]\)
\(det A = 144+128-328- 24\)
\(det A = -80\)
Pro výpočty matice A = (aij) 4 × 4 z roztažení řádku je určeno následujícím vzorcem:
\(
det A =
\begin{vmatrix}
a & b & c & d\\e & f & g &h \\i & j & k & l \\ m & n & o & p
\end{vmatrix} \\
\)
\(det A= a\begin{vmatrix}
f & g & h\\j & k & l\\n & o & p\end{vmatrix} – b\begin{vmatrix}e & g & h\\i & k & l\\ m & o & p\end{vmatrix}+c\begin{vmatrix}e & f & h \\i & j & l\\m & n & p\end{vmatrix}-d\begin{vmatrix}e & f & g\\i & j & k\\m & n & o\end {vmatrix}\)
Poté jednoduše determinant kalkulačka 3×3 pomocí výše uvedeného vzorce 3×3.
Příklad:
Nalézt
\(
det A =
\begin{vmatrix}
1 & 8 & 7 & 2\\2 & 4 & 3 &8 \\1 & 4 & 3 & 2 \\ 1 & 4 & 9 & 6
\end{vmatrix} \\
\)?
Řešení:
\(det A= 1\begin{vmatrix}4 & 3 & 8\\4 & 3 & 2\\4 & 9 & 6\end{vmatrix} – 8\begin{vmatrix}2 & 3 & 8\\1 & 3 & 2\\ 1 & 9 & 6\end{vmatrix}+7\begin{vmatrix}2 & 4 & 8 \\1 & 4 & 2\\1 & 4 & 6\end{vmatrix}-2\begin{vmatrix}2 & 4 & 3\\1 & 4 & 3\\1 & 4 & 9\end {vmatrix}\)
\(det A=1( 4\begin{vmatrix}
3 & 2 \\9 & 6\end{vmatrix} – 3\begin{vmatrix}4 & 2 \\4 & 6\end{vmatrix}+8\begin{vmatrix}4 & 3 \\4 & 9\end{vmatrix}) -8( 2\begin{vmatrix}
3 & 2 \\9 & 6\end{vmatrix} – 3\begin{vmatrix}1 & 2 \\1 & 6\end{vmatrix}+8\begin{vmatrix}1 & 3 \\1 & 9\end{vmatrix}) +7( 2\begin{vmatrix}
4 & 2 \\4 & 6\end{vmatrix} – 4\begin{vmatrix}1 & 2 \\1 & 6\end{vmatrix}+8\begin{vmatrix}1 & 4 \\1 & 4\end{vmatrix}) -2( 2\begin{vmatrix}
4 & 3 \\4 & 9\end{vmatrix} – 4\begin{vmatrix}1 & 3 \\1 & 9\end{vmatrix}+3\begin{vmatrix}1 & 4 \\1 & 4\end{vmatrix})\)
\(det A = 1[4(18-18)-3(24-8)+ 8(36-12)]-8[ 2(18-18)-3(6-2)+ 8(9-3)]+ 7[ 2(24-8)-4(6-2)+ 8(4-4)]-2[2(36-12)-4(9-3)+ 3(4-4)] \)
\(det A = 1[4(0)-3(16)+ 8(24)]-8[ 2(0)-3(4)+ 8(6)]+ 7[ 2(16)-4(4)+ 8(0)]-2[2(24)-4(6)+ 3(0)]\)
\(det A = 1[0-48+192]-8[0-12+48]+ 7[ 32-16+0]-2[48-24+0]\)
\(det A = 1[144]-8[36]+ 7[16]-2[24]\)
\(det A = 144-288+112- 48 \)
\(det A = -80\)
Pro výpočty matice A = (aij) 4 × 4 pomocí Leibnizova vzorce se stanoví následující vzorec:
\(
det A =
\begin{vmatrix}
a & b & c & d\\e & f & g &h \\i & j & k & l \\ m & n & o & p
\end{vmatrix} \\
\)
\(det A = a*f*k*p + a*j*o*h + a*n*g*l + e*b*o*l + e*j*c*p + e*n*k*d + i*b*g*p + i*f*o*d + i*n*c*h+ m*b*k*h + m*f*c*l + m*j*g*d − a*f*o*l – a*j*g*p – a*n*k*h − e*b*k*p – e*j*o*d -e*n*c*l− i*b*o*h – i*f*c*p – i*n*g*d − m*b*g*l – m*f*k*d – m*j*c*h\)
Příklad:
Find \(
det A =
\begin{vmatrix}
1 & 8 & 7 & 2\\2 & 4 & 3 &8 \\1 & 4 & 3 & 2 \\ 1 & 4 & 9 & 6
\end{vmatrix} \\
\)?
Řešení:
\(
det A =
\begin{vmatrix}
1 & 8 & 7 & 2\\2 & 4 & 3 &8 \\1 & 4 & 3 & 2 \\ 1 & 4 & 9 & 6
\end{vmatrix} \\
\)
\(1*4*3*6-1*4*2*9-1*3*4*6+1*3*2*4+1*8*4*9-1*8*3*4-8*2*3*6+8*2*2*9+8*3*1*6-8*3*2*1-8*8*1*9+8*8*3*1+7*2*4*6-7*2*2*4-7*4*1*6+7*4*2*1+7*8*1*4-7*8*4*1-2*2*4*9+2*2*3*4+2*4*1*9-2*4*3*1-2*3*1*4+2*3*4*1\)
\(=-80\)
Výpočty pro matice 5×5 z různých metod jsou diskutovány zde:
Pro výpočty matice A = (aij) je 5 × 5 z expanze kolony určeno následujícím vzorcem:
\(
det A =
\begin{vmatrix}
a & b & c & d & e\\f & g & h & i & j\\k & l & m & n & o \\ p & q & r & s & t \\ u & v & w & x & y
\end{vmatrix} \\
\)
\(det A= a\begin{vmatrix}
g & h & i & j\\l & m & n & o\\q & r & s & t\\v & w & x & y\end{vmatrix} – f\begin{vmatrix}b & c & d & e\\l & m & n & o\\ q & r & s & t\\ v & w & x & y\end{vmatrix}+k\begin{vmatrix}b & c & d & e \\g & h & i & j\\q & r & s & t\\v & w & x & y\end{vmatrix}-p\begin{vmatrix}b & c & d & e\\g & h & i & j\\l & m & n & o\\q & r & s & t\end {vmatrix}\)
Potom jednoduše určete determinant 4×4 pomocí výše uvedeného vzorce 4×4.
Pro výpočty matice A = (aij) je 5 × 5 z rozšíření řady určeno následujícím vzorcem:
\(
det A =
\begin{vmatrix}
a & b & c & d & e\\f & g & h & i & j\\k & l & m & n & o \\ p & q & r & s & t \\ u & v & w & x & y
\end{vmatrix} \\
\)
\(det A= a\begin{vmatrix}
g & h & i & j\\l & m & n & o\\q & r & s & t\\v & w & x & y\end{vmatrix} – b\begin{vmatrix}g & h & i & j\\k & m & n & o\\ p & r & s & t\\ u & w & x & y\end{vmatrix}+c\begin{vmatrix}f & g & i & j \\k & l & n & o\\p & q & s & t\\u & v & x & y\end{vmatrix}-d\begin{vmatrix}f & g & h & j\\k & l & m & o\\p & q & r & t\\u & v & w & y\end {vmatrix}+e\begin{vmatrix}f & g & h & i\\k & l & m & n\\p & q & r & s\\u & v & w & x\end {vmatrix}\)
Potom jednoduše určete determinant 4×4 pomocí výše uvedeného vzorce 4×4
Pro výpočty matice A = (aij) 5 × 5 pomocí Leibnizova vzorce se určí následující vzorec:
\(
det A =
\begin{vmatrix}
a11 & a12 & a13 & a14 & a15\\a21 & a22 & a23 & a24 & a25\\a31 & a32 & a33 & a34 & a35 \\ a41 & a42 & a43 & a44 & a45 \\ a51 & a52 & a53 & a54 & a55
\end{vmatrix} \\
\)
obraz
Příklad:
Find \(
det A =
\begin{vmatrix}
1 & 8 & 7 & 2 & 8\\2 & 4 & 3 &8 & 3\\1 & 4 & 3 & 2 &1\\ 1 & 4 & 9 & 6 & 2 \\ 1 & 5 & 7 & 3 & 4
\end{vmatrix} \\
\)?
Řešení:
\(
det A =
\begin{vmatrix}
1 & 8 & 7 & 2 & 8\\2 & 4 & 3 &8 & 3\\1 & 4 & 3 & 2 &1\\ 1 & 4 & 9 & 6 & 2 \\ 1 & 5 & 7 & 3 & 4
\end{vmatrix} \\
\)
\( =1*4*3*6*4-1*4*3*2*3-1*4*2*9*4+1*4*2*2*7+1*4*1*9*3-1*4*1*6*7-1*3*4*6*4+1*3*4*2*3+1*3*2*4*4-1*3*2*2*5-1*3*1*4*3+1*3*1*6*5+1*8*4*9*4-1*8*4*2*7-1*8*3*4*4+1*8*3*2*5+1*8*1*4*7-1*8*1*9*5-1*3*4*9*3+1*3*4*6*7+1*3*3*4*3-1*3*3*6*5-1*3*2*4*7+1*3*2*9*5-8*2*3*6*4+8*2*3*2*3+8*2*2*9*4-8*2*2*2*7-8*2*1*9*3+8*2*1*6*7+8*3*1*6*4-8*3*1*2*3-8*3*2*1*4+8*3*2*2*1+8*3*1*1*3-8*3*1*6*1-8*8*1*9*4+8*8*1*2*7+8*8*3*1*4-8*8*3*2*1-8*8*1*1*7+8*8*1*9*1+8*3*1*9*3-8*3*1*6*7-8*3*3*1*3+8*3*3*6*1+8*3*2*1*7-8*3*2*9*1+7*2*4*6*4-7*2*4*2*3-7*2*2*4*4+7*2*2*2*5+7*2*1*4*3-7*2*1*6*5-7*4*1*6*4+7*4*1*2*3+7*4*2*1*4-7*4*2*2*1-7*4*1*1*3+7*4*1*6*1+7*8*1*4*4-7*8*1*2*5-7*8*4*1*4+7*8*4*2*1+7*8*1*1*5-7*8*1*4*1-7*3*1*4*3+7*3*1*6*5+7*3*4*1*3-7*3*4*6*1-7*3*2*1*5+7*3*2*4*1-2*2*4*9*4+2*2*4*2*7+2*2*3*4*4-2*2*3*2*5-2*2*1*4*7+2*2*1*9*5+2*4*1*9*4-2*4*1*2*7-2*4*3*1*4+2*4*3*2*1+2*4*1*1*7-2*4*1*9*1-2*3*1*4*4+2*3*1*2*5+2*3*4*1*4-2*3*4*2*1-2*3*1*1*5+2*3*1*4*1+2*3*1*4*7-2*3*1*9*5-2*3*4*1*7+2*3*4*9*1+2*3*3*1*5-2*3*3*4*1+8*2*4*9*3-8*2*4*6*7-8*2*3*4*3+8*2*3*6*5+8*2*2*4*7-8*2*2*9*5-8*4*1*9*3+8*4*1*6*7+8*4*3*1*3-8*4*3*6*1-8*4*2*1*7+8*4*2*9*1+8*3*1*4*3-8*3*1*6*5-8*3*4*1*3+8*3*4*6*1+8*3*2*1*5-8*3*2*4*1-8*8*1*4*7+8*8*1*9*5+8*8*4*1*7-8*8*4*9*1-8*8*3*1*5+8*8*3*4*1\)
\( =-248\)
Poznámka:
Pravidlo Triangle & Rule of Sarrus platí pouze pro matici do 3×3. Naše online kalkulačka determinant matice používá všechny tyto vzorce pro přesné a přesné výpočty determinantů. Jednoduše můžete použít naši online matematickou kalkulačku, která vám pomůže snadno provádět různé matematické operace za zlomek času.
Naše online kalkulačka pomáhá najít determinant kalkulačka matice až 5×5 pomocí pěti různých metod. Postupujte podle bodů a získejte přesné výsledky.
Číst dál!
Vstupy:
Poznámka:
Existuje pole „číslo sloupce nebo řádku“, ve kterém zadáte číslo řádku nebo číslo sloupce, které musíte rozbalit. Také v něm jsou pole generovat matici a vymazat matici, bude automaticky generovat matici a vymazat všechny hodnoty z matice.
Výstupy:
Jakmile vyplníte všechna pole, kalkulačka zobrazí:
Poznámka:
Bez ohledu na to, kterou metodu pro výpočty zvolíte, vám online determinant kalkulačka zobrazí výsledky podle vybrané možnosti.
Protože determinanty mají mnoho užitečných vlastností, ale zde jsme uvedli některé z jeho důležitých vlastností:
Determinant je užitečný při určování řešení lineárních rovnic, zachycení toho, jak lineární transformace mění objem nebo oblast a mění proměnné v integrálech. Je zobrazen jako funkce, jejíž vstup je čtvercová matice, ale výstup je jako jedno číslo.
Determinant 0 znamená, že objem je nula (0). Může k tomu dojít, pouze když se jeden z vektorů překrývá jeden s druhým.
Jelikož se jedná o reálné číslo, nikoli o matici. Může to tedy být záporné číslo. Determinant existuje pouze pro čtvercové matice (2 × 2, 3 × 3, … n × n).
Naštěstí se dozvíte o determinantách, jak je najít ručně, a různých aplikacích v matematice včetně řešení lineárních rovnic; určit změnu objemu nebo plochy v lineární transformaci atd. Pokud jde o řešení determinantu matice vyššího řádu, je to velmi skličující úkol. Jednoduše zkuste tuto online determinant kalkulačka, která vám umožní najít kalkulačka determinant matic pomocí různých metod výpočtu s úplnými výpočty. Studenti a odborníci obvykle používají tuto kalkulačku určující matice k řešení svých matematických problémů.
Other languages: Determinant Calculator, Determinant Hesaplama, Kalkulator Wyznacznika Macierzy, Kalkulator Penentu Matriks, Determinanten Rechner, 行列式 計算, 행렬식 계산기, Calculadora De Determinantes, Calcul Déterminant Matrice, Calculadora De Determinantes, Calcolo Determinante, Калькулятор Определителя, حساب محدد, Determinantti laskin, Determinantberegner.